PARENTAL DESIRE FOR SONS AND DAUGHTERS IN A WESTERN INDUSTRIAL SETTING: EVIDENCE AND IMPLICATIONS

Rebecca Kippen
Ann Evans
Edith Gray

Working Papers in Demography
No. 98
January 2006
PARENTAL DESIRE FOR SONS AND DAUGHTERS IN A WESTERN INDUSTRIAL SETTING: EVIDENCE AND IMPLICATIONS

REBECCA KIPPEN*, ANN EVANS and EDITH GRAY, Demography & Sociology Program, The Australian National University

This paper considers whether sex composition of existing children is an important factor in parity progression in Australia. Using census data from 1981, 1986, 1991, 1996 and 2001, women are linked with their co-resident children, allowing investigation of family sex composition and its changing impact over time on the propensity to have another child. We find that parents are much more likely to have a third and fourth birth if existing children are all of the same sex, indicating a strong desire for a child of the opposite sex. This increased propensity has added almost three per cent to the fertility of recent cohorts. The paper concludes with a discussion of the potential impact of sex selection technologies on fertility. We argue that future widespread use of reliable sex selection technologies might act to increase fertility in the short-term, but would lead to a long-term reduction in fertility.

Keywords

Australia, census, fertility determinants, parity progression ratio, sex preference, sex preselection, sex ratio.

Introduction

Research around the world shows that parents in many countries hold strong preferences when it comes to the sex of their children. In countries such as India and China, sons are preferred for their practical and economic assistance, their capacity to inherit the family estate and maintain the family name, and their fulfillment of gender-specific religious functions (Arnold et al. 1998; Graham et al. 1998). In Europe and English-speaking countries, studies generally find a parental preference for at least one son and one daughter (Freedman et al. 1960; Young 1977; McDougall et al. 1999; Hank et al. 2000; Pollard et al. 2002; Kippen et al. 2005), although recent findings indicate an emerging bias towards daughters in some European regions (Jacobsen et al. 1999; Hank et al. 2000; Brockmann 2001).

This paper examines whether Australian parents have a preference for one child of each sex, and, if so, what impact this has had on the fertility of recent cohorts. We begin by discussing the differential value of sons and daughters to parents in developed countries and ways of testing for parental gender preference. The data, method and results of this study are then described. We conclude with a discussion of how new sex selection technologies might impact on fertility in Australia and around the world.

* Rebecca Kippen, Demography & Sociology Program, Coombs Building 9, The Australian National University, Canberra ACT 0200, Australia. Email: rebecca.kippen@anu.edu.au.
The differential value of sons and daughters

A cross-country study conducted in the 1970s found that it was important for parents to have sons to carry on the family name, for old-age support and practical assistance, for the conduct of religious ceremonies and for the psychological satisfaction sons provide while young, including companionship for the father. Daughters were valued for balancing the number of sons, for their practical assistance and behavioural and personality characteristics, and for providing companionship for the mother (Arnold et al. 1975). Studies conducted in the new millennium in developed countries will probably find some of these reasons still apply, others are no longer important and new reasons have emerged.

Although gender roles are becoming increasingly similar in developed countries, gender differentiation still begins at birth—sometimes before birth if the sex of the expected child is known. Clothes, toys and names are chosen on the basis of the baby’s sex, and whether the prospective child or newborn is a boy or a girl is usually the first piece of information elicited by the child’s parents, parents’ friends, and relatives. It is simply accepted that boys and girls each bring a gendered quality to their family and the world at large.

Ways of testing for gender preference

Researchers over the past half century have employed a number of different methods to evaluate whether parents want children of a particular sex. Three of these methods are outlined below.

The existence of widespread sex-selective abortion is strongly indicative of parental sex preference. In China, for example, strong preference for sons interacting with pressure to limit family size has resulted in highly skewed sex ratios at birth, with many more males born than females. A study of one rural Chinese county found that almost 50 per cent of pregnant women ascertained foetal sex. Of these, 90 per cent of those carrying a female foetus aborted if this was their second pregnancy and their first child was a girl (Junhong 2001).

Some surveys have asked respondents hypothetical questions on the preferred sex of an only child or firstborn child, or the ideal sex composition of children. U.S. studies from the 1940s through to the present have consistently found a preference among both men and women for a firstborn or only son (Dinitz et al. 1954; Williamson 1976; Wood et al. 1977; Swetkis et al. 2002; Lyons 2003 in Jain et al. 2005). However in the case of a hypothetical two-child family, most respondents preferred one child of each sex (Wood et al. 1977; Sensibaugh et al. 1997).

The most common gender preference studies are those which analyse progression, or intended progression, to another birth based on the sex of existing children (see, for example, Freedman et al. 1960; Wood et al. 1977; Young 1977; Sloane et al. 1983; Jacobsen et al. 1999; Hank et al. 2000; Brockmann 2001; Hank et al. 2002; Pollard et al. 2002; Andersson et al. 2004; Kippen et al. 2005). Parental preference can be inferred from the differential probability of progressing to another birth based on whether children already in the family are all sons, all daughters, or a mixture. The higher the probability of progression, the less likely it is that the desired sex composition has been achieved. For example, in Sweden, mothers of two boys or two girls are around 25 per cent more likely to have a third child than are mothers with a son and a daughter, indicating a preference for one child of each sex. This difference has been constant over 40 years (Hank et al. 2002). A study of 17 European countries, which examined the desire to have a third birth and the actual transition to a third birth, based on sex of existing children, found that in most of these countries there was a strong preference for at
least one child of each sex but that parents in some countries also exhibited a preference for daughters over sons (Hank et al. 2000).

Data and method

The current study uses the last method outlined above. We calculate parity progression ratios (the probability of having $x+1$ children given x children) for selected cohorts of Australian women, and examine differentials in the propensity to have another child given the sex composition of existing children. Data for this research are derived from the 1981, 1986, 1991, 1996 and 2001 Australian Censuses of Population and Housing. For each census, Australian-resident women are matched to their children living in the same household using the ‘relationship in the household’ census variable, which describes the relationship of each person in the household to the household reference person. Available characteristics for each mother-and-children matching are age of mother and age and sex of each child.

We compared the total number of children matched to each single-year birth cohort of women with the number of children expected for each birth cohort given the relevant cohort’s age-specific fertility rates up until the time of the census. This was done in order to determine what proportion of children were ‘missing’ from their mother’s household, either because they had died or were resident elsewhere.\(^1\) As expected, older women had a lower proportion of children resident with them, because these women’s children are likely to be adults themselves who have left home.

We decided to focus on women aged 38 years at each census as these women have near-complete fertility (96–99 per cent) and a reasonably high proportion of co-resident children (83–90 per cent). For these women, we calculate parity distributions by sex order of children. These parity distributions are adjusted so that the aggregate parity distributions reflect the completed-fertility parity distributions for each cohort, calculated previously by Kippen (2003; 2004). Using these adjusted parity distributions we then calculate parity progression ratios up to the progression from third to fourth birth for each variant of family sex composition.

Results

We consider the fertility of five cohorts of Australian women, aged 38 years at each census, who were born in 1942/43, 1947/48, 1952/53, 1957/58 and 1962/63. The completed fertility and parity distributions of each cohort are shown in Table 1. Fertility fell consistently across these cohorts, with the average number of births per woman around 20 per cent lower for women born in 1962/63 than for women born two decades earlier. This decline results from a marked increase in the proportion of women with no children and one child at the end of their reproductive lives, balanced by a reduction in the number of families with four or more children.

\(^1\) An implicit assumption in this comparison is that female mortality and migration are independent of fertility and that the number of adoptions is negligible relative to the number of births.
Table 1. Completed fertility and parity distributions, Australian women born 1942/43–1962/63

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed fertility (average births per woman)</td>
<td>2.66</td>
<td>2.40</td>
<td>2.29</td>
<td>2.22</td>
<td>2.12</td>
</tr>
<tr>
<td>Completed parity distribution (no. of births)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.09</td>
<td>0.10</td>
<td>0.12</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>2</td>
<td>0.34</td>
<td>0.39</td>
<td>0.39</td>
<td>0.38</td>
<td>0.39</td>
</tr>
<tr>
<td>3</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.22</td>
</tr>
<tr>
<td>4+</td>
<td>0.21</td>
<td>0.15</td>
<td>0.13</td>
<td>0.13</td>
<td>0.11</td>
</tr>
<tr>
<td>Total</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Parity progression ratios by sex of existing children are shown in Figures 1 to 3. The proportion of women who progressed from a first birth to a second birth has declined from 91 per cent for those born in 1942/43 to 85 per cent for those born in 1962/63 (Figure 1). The probability of having a second child is very slightly more likely if the first child is a son rather than a daughter, with a difference of around one half of a percentage point for each cohort. However the overwhelming conclusion is that there is virtually no difference between the progression to a second child based on sex of the first child, indicating that sons and daughters are equally desired in Australia.

Figure 1. Parity progression ratio, first to second birth, by sex of first child, Australian women born 1942/43–1962/63

Source: Table 3.
Regarding progression from second to third birth, sex differences begin to emerge here between same-sex and mixed-sex families. Mothers with two girls or two boys are much more likely to have had a third child than are mothers with a son and a daughter (Figure 2). This strongly suggests that in Australia, parents desire at least one child of each sex, rather than children of a particular sex. Furthermore, the differential is growing stronger over time. Mothers born in 1942/43 are 17 per cent more likely to have had a third child if their first two are of the same sex than if they are of different sexes, rising to 24 per cent for mothers born in 1962/63. It also appears that a weak daughter preference may be emerging. Mothers born from 1957/58 with two boys are slightly more likely to have a third child than are mothers of two girls.

Figure 2. Parity progression ratio, second to third birth, by sex of first two children, Australian women born 1942/43–1962/63

![Parity progression ratio, second to third birth, by sex of first two children](image)

Source: Table 3.

In progression from the third to the fourth child, again mothers with children of all one sex are the most likely to have a fourth child. Those least likely are mothers whose first two children are of the same sex and the third is of the opposite sex (Figure 3). This is consistent with many of these being strongly influenced to have a third child to try for one of the missing sex. Once this is achieved they then stop having children.

This analysis is based on co-resident mothers and children at the time of each census, with calculated parity distributions adjusted to match true parity distributions for each cohort. Of concern is the fact that not all children are resident with their mothers. This may diminish actual differentials in the probability of progressing to another child based on sex of existing children, as missing children would tend to randomise the data. However we examined these differentials for the selected cohorts at younger ages (at which virtually all their children are co-resident) and found that they are relatively invariant across age from the late 20s to the late 30s. We therefore regard the results discussed above as reliable.
The evidence presented above shows that parental desire for both sons and daughters influences the decision to have another child. Of the female cohorts studied, those with two sons or two daughters are 17–24 per cent more likely to have had a third child than are those with one child of each sex. This differential is similar to that found in Sweden (Hank et al. 2002) and the United States (Pollard et al. 2002). Australian women with three sons or three daughters are 8–12 per cent more likely to have had a fourth child than are women with three children whose first two are of different sexes. The conclusion is that many Australian parents are willing to ‘try again’ in order to achieve a child of the missing sex.

The impact on cohort fertility of wanting a son and a daughter

We now consider the impact on completed cohort fertility of this extra propensity to have a third or fourth child if children already in the family are all boys or all girls. To do this, we calculate what the fertility of each cohort would be if:

the probability of progressing from second to third birth was, for all women, equal to that of women whose first two children were of different sexes; and

the probability of progressing from third to fourth birth was, for all women, equal to that of women whose first two children were of different sexes.²

² For the progression from third to fourth birth, we consider only women with three children whose first two children were of different sexes. We exclude women whose first two children were of the same sex, and third was of the opposite sex. The reason for this is that these women have lower rates of progression to a fourth birth because many were influenced to have a third birth in order to achieve a child of the missing sex. If sex of child was not a factor in their decision to have another child, their probability of progressing from third to fourth birth would presumably be similar to those of women whose first two children were of different sexes.
Table 2 shows actual completed fertility of each cohort, and the hypothetical cohort fertility that would result if parents with all same-sex children did not ‘try again’ for a child of the other sex. For women born across these 20 years, the desire to have at least one child of each sex translates into an increase in completed cohort fertility of around 2.8 per cent. This has been relatively constant across the cohorts.

Table 2. Actual and hypothetical completed fertility, Australian women born 1942/43–1962/63

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual fertility</td>
<td>2.66</td>
<td>2.40</td>
<td>2.29</td>
<td>2.22</td>
<td>2.12</td>
</tr>
<tr>
<td>Hypothetical fertility</td>
<td>2.59</td>
<td>2.33</td>
<td>2.22</td>
<td>2.16</td>
<td>2.06</td>
</tr>
<tr>
<td>Absolute difference</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Relative difference</td>
<td>2.7%</td>
<td>2.9%</td>
<td>2.8%</td>
<td>2.8%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Future impact on fertility of wanting a son and a daughter

Pollard and Morgan (2002) posit that, in the future, the preference for children of both sexes will diminish as gender roles continue to become less distinct. This will act to lessen the impact of parental gender preference on fertility. Conversely, Wood and Bean (1977) point to the trend towards smaller families as resulting in a larger impact on fertility of parental gender preference. When most parents have large numbers of children regardless of their sex, there is a high probability that at least one son and one daughter will be achieved without trying. However, when parents would prefer to have fewer children, the sex of the first two (or first three) children may be a major factor in the decision to have another child. Since the trends to less distinct gender roles and smaller families are concurrently taking place, the probable net effect on future fertility is difficult to assess (Kippen et al. 2005).

However the above analysis suggests that future change in impact may be small. In Australia, the effect on fertility has been relatively invariant for the cohorts considered. Although these cohorts span only a short period of time—20 years—they have very different parity distributions and grew up under very different gender regimes. Almost half of women born in 1942/43 had three or more children, compared with one third of women born in 1962/63 (Table 1). Women born in 1942/43 were likely to experience much more sharply delineated gender roles than were women born two decades later.

Sex-selection technology

For all these cohorts, one important factor has changed very little: the ability to control sex of children born. Home or folk methods of pre-conception sex selection have existed for hundreds of years. Such methods are still widely used, even in developed countries, as evidenced by the popularity of books claiming that the chances of conceiving a child of a
particular sex can be maximised through, for example, the timing of intercourse (Shettles et al. 1996) or eating certain foods (Langendoen et al. 1982). These methods are not clinically proven and probably work only 50 per cent of the time.

The development of effective sex-selection technology was predicted in the 1960s and 1970s (Wood et al. 1977) with Kahn and Weiner (1967) asserting that the technology would be available by the end of the twentieth century. They were right. By the end of the twentieth century, three methods of relatively reliable prenatal sex selection had become available. These are sex-selective abortion, Preimplantation Genetic Diagnosis (PGD) and flow cytometric sperm separation.

Sex-selective abortion involves determining foetal sex through ultrasound, amniocentesis, or chorionic villus sampling and aborting pregnancies of the unwanted sex. This procedure is widely used in some countries but is unlikely to be common in countries such as Australia. Although data are sketchy, Australian government statistics indicate that 99 per cent of procedures that could include abortion are carried out within the first trimester of pregnancy (Health Insurance Commission 2004), before foetal sex can be ascertained. The vast majority of later-term abortions are carried out because of foetal abnormality. A longitudinal study of 578 Australian women undergoing prenatal diagnosis found that none terminated their pregnancy because the foetus was the ‘wrong’ sex (Robinson et al. 1991 in Dahl 2003).

Soon however, foetal sex may be able to be ascertained much earlier than previously. One current area of research involves testing blood samples from pregnant women for the presence of Y-chromosomes. Since foetal DNA is present in the maternal bloodstream during pregnancy, the presence of Y-chromosomes indicates that the mother is carrying at least one boy (Rijnders et al. 2003). One company claims to be able to carry out reliable mail-order finger-prick testing of foetal sex at five weeks’ gestation, although the claims have not been verified through independent testing or review (Kaiser 2005).

PGD is an extension of in vitro fertilisation (IVF). Soon after embryos are created, one or two cells are extracted and analysed to determine genetic characteristics including sex. Only embryos of the desired sex are implanted. This method is highly reliable for determining the sex of potential babies, but carries problems inherent to the IVF process. In many developed countries (including Australia, Canada, Denmark, Italy, New Zealand, Spain, and the United Kingdom), the use of PGD for sex selection is limited to preventing genetic disease associated with a particular sex.

Flow cytometric sperm separation involves sorting sperm into X-chromosome-rich and Y-chromosome-rich pools. The sorted sperm are then used in artificial insemination or IVF procedures. In the United States where this technology was developed, several hundred births have resulted from the use of sorted sperm. The proportion of those pregnancies which are of the desired sex is around 76 per cent for males and 91 per cent for females (Jain et al. 2005).

Discussion of the ethics of social sex selection—as opposed to sex selection to avoid a medical condition—has intensified in recent years as reliable selection methods have moved out of the realm of speculation and into reality. Those in favour of social sex selection generally base their arguments on the notion of reproductive autonomy (Savulescu 1999; Robertson 2001; Dahl 2003; Heyd 2003; Tizzard 2004). They argue that, unless there is demonstrable, widespread harm caused by sex selection, the right of parents to determine aspects of their procreativity is paramount.
Arguments against the use of sex-selection technologies generally fall into one of two categories. The first is against the use of sex selection at all—no matter what the method—because it reinforces gender discrimination and stereotypes, and leads to the commodification of children through an emphasis on their sex rather than their intrinsic value (ECASRM 2004; NHMRC 2004). Some proponents of this viewpoint also argue the possibility of distortions in the sex ratio in Western countries—as seen in China and India (Laland et al. 1994; ECASRM 2004).

The second group of arguments focuses on perceived negative aspects of particular methods of sex selection, rather than sex selection per se, although these arguments are often made in conjunction with the latter. For example, New Zealand has prohibited the use of PGD for social sex selection because of gender discrimination, but also because ‘sex selection is seen as a demeaning reason for creating and discarding human embryos...in view of the potential they represent’ (NECAHR 2004). A recent American study based on 21 focus groups found that most participants were in favour of using PGD to avoid sex-specific medical conditions, but that they regarded this as 'morally distinct' from using sex-selective abortion for the same purpose (Kalfoglou et al. 2005).

Future impact of sex-selection technologies on fertility

As has been noted in China and India, the widespread availability of sex-selection technology (in this case, sex-selective abortion), can have a profound impact on the number and sex ratio of births. It is unknown what the take-up rate would be if these, and future-developed, technologies became widely and reliably available at an affordable price in Western countries. A recent study of women presenting to a United States clinic for infertility care found that 41 per cent would select the sex of their next child if it could be done at no added cost (Jain et al. 2005). However this sample may be biased towards those who are willing to use technology for reproductive purposes. A representative survey in the United Kingdom has found that 21 per cent of women and men would take advantage of flow cytometric sperm separation if it were available in Britain (Dahl et al. 2003). Given that each attempt of this procedure involves visiting a fertility clinic, providing a sperm sample, and 3–5 cycles of insemination at a cost of £1,250 (Dahl et al. 2003), it is highly likely that the take-up rate of sex-selection technology would be much greater if, for example, it involved something as simple as taking a pink or blue pill before conception.

If sex-selection technology came into common use, it may act to increase fertility in the short term, as those who would have another child if and only if they could guarantee a boy/girl act to complete their families. However in the long term, such technology would probably act to significantly reduce fertility, as parents precisely select the sex composition of their family without having to ‘try again’ with a 50/50 chance of getting it right. As shown above, the extra propensity to have a third and fourth child if existing children were all of the same sex added almost three per cent to the fertility of recent Australian cohorts. However the impact of gender preference may be much greater. Some parents may have a second child because they wish for a son and a daughter, rather than two children per se. Additionally, there is strong anecdotal evidence that some parents strongly prefer sons over daughters, and vice versa. In general, these preferences balance out and so are masked in the parity progression ratios calculated above.

In countries such as Australia, the widespread use of sex-selection technologies is unlikely to significantly impact the sex ratio at birth in the short term, given that it appears sons and daughters are desired in roughly equal measure. However parental preferences for the sex of
their children can change quickly. For example, in 1982, of Japanese wives who wanted one child, 52 per cent expressed a preference for a son. However, only ten years later, 76 per cent of wives who wanted an only child said that they would prefer a daughter (Atoh et al. 1993).

Also of concern are potential changes in the sex ratio of firstborn children, given that most surveys find that men and women yet to have children would prefer a firstborn son if given the choice (Marleau et al. 2002). Concern about bias to firstborn sons has been expressed since at least the 1970s because of particular characteristics that may predominate in firstborn children (Williamson 1976). Some studies show that firstborns, on average, are more intelligent (Belmont et al. 1973), better educated (Black et al. 2005) and higher achieving (Sputa et al. 1995) than later-born siblings and are over-represented amongst political leaders (Steinberg 2001). If the proportion of firstborns who are male increases, and sex balance remains an issue, this may lead to ‘a nation of little sisters’ (Andrews 1999 in Belkin 1999).

Conclusion

This study finds that Australian mothers with two or three children of the same sex are much more likely to have another child than are mothers with two or three children of both sexes. For cohorts born 1942/43–1962/63, the added propensity to have a third or fourth child to gain a child of the missing sex has added almost three per cent to completed cohort fertility. The future advent of readily available efficacious sex-selection technology may act to decrease fertility in the long term, as parents gain control over the sex of each child added to their family.

Acknowledgements

Funding for this research was provided by the Australian Research Council under grant DP0558818. The authors thank the Australian Bureau of Statistics for provided census data under the Australian Census Analytic Program. The authors also thank Dirk van de Kaa, Peter McDonald, Melinda Mills and Philip Morgan for their valuable comments on this paper.
Table 3. Parity progression ratios by sex of existing children, Australian women born 1942/43–1962/63

<table>
<thead>
<tr>
<th></th>
<th>To first birth</th>
<th>First to second birth</th>
<th>Second to third birth</th>
<th>Third to fourth birth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.91</td>
<td>0.90</td>
<td>0.88</td>
<td>0.86</td>
</tr>
<tr>
<td>First to second birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>0.91</td>
<td>0.89</td>
<td>0.88</td>
<td>0.86</td>
</tr>
<tr>
<td>F</td>
<td>0.91</td>
<td>0.89</td>
<td>0.87</td>
<td>0.86</td>
</tr>
<tr>
<td>Second to third birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M, M</td>
<td>0.63</td>
<td>0.56</td>
<td>0.54</td>
<td>0.55</td>
</tr>
<tr>
<td>F, F</td>
<td>0.63</td>
<td>0.56</td>
<td>0.54</td>
<td>0.53</td>
</tr>
<tr>
<td>M, F</td>
<td>0.54</td>
<td>0.46</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>F, M</td>
<td>0.54</td>
<td>0.46</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>Third to fourth birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M, M, M</td>
<td>0.46</td>
<td>0.40</td>
<td>0.39</td>
<td>0.38</td>
</tr>
<tr>
<td>F, F, F</td>
<td>0.47</td>
<td>0.41</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>M, F, M</td>
<td>0.43</td>
<td>0.36</td>
<td>0.34</td>
<td>0.35</td>
</tr>
<tr>
<td>M, F, F</td>
<td>0.43</td>
<td>0.37</td>
<td>0.35</td>
<td>0.34</td>
</tr>
<tr>
<td>F, M, F</td>
<td>0.45</td>
<td>0.37</td>
<td>0.36</td>
<td>0.34</td>
</tr>
<tr>
<td>F, M, M</td>
<td>0.44</td>
<td>0.37</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>M, M, F</td>
<td>0.38</td>
<td>0.33</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>F, F, M</td>
<td>0.40</td>
<td>0.34</td>
<td>0.32</td>
<td>0.32</td>
</tr>
</tbody>
</table>

References

